martes, 10 de marzo de 2015

Cómo se produce el sonido
    El sonido solo se produce sonido cuando un cuerpo vibra muy rápidamente.
La vibración del elástico produce un sonido
    La frecuencia es el número de vibraciones u oscilaciones completas que se efectúan en 1 segundo.
    Se producen sonidos audibles cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz (Hercio, unidad de medida para la frecuencia).
Una guitarra produce sonido si vibra con una frecuencia
comprendida entre 20 y 20000 Hz
 
    El sonido se transmite a través de medios materiales, sólidos, líquidos o gaseosos pero nunca a través del vacío.
   El sonido se produce cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz y existe un medio material en el que pueda propagarse.
    El sonido es una onda. Una onda es una perturbación que se propaga por el espacio. En una onda se propaga energía, no materia.
    El sonido se propaga en el aire a una velocidad de 340 m/s a temperatura normal (aproximadamente a 20º).
Para que el sonido pueda llegar a nuestros oídos necesita un espacio o medio de propagación, este normalmente suele ser el aire la velocidad de propagación del sonido en el aire es de unos 334 m/s y a 0º es de 331,6 m/s.
La velocidad de propagación es proporcional a la raíz cuadrada de la temperatura absoluta y es alrededor de 12 m/s mayor a 20º.
La velocidad es siempre independiente de la presión atmosférica. Como hemos visto cuando mayor sea la temperatura del ambiente menos rápido llegara el sonido a nuestros oídos, es por eso que algunas personas dicen que "en invierno se suele escuchar mejor" es decir, a mayor temperatura menor respuesta del sonido en el aire.

MEDIO
TEMPERATURA (C°)
VELOCIDAD (m/s)
Aire
0
331,46
Argón
0
319
Bióxido de Carbono
0
260,3
Hidrógeno
0
1286
Helio
0
970
Nitrógeno
0
333,64
Oxigeno
0
314,84
Agua destilada
20
1484


ONDAS TRANSVERSALES Y LONGITUDINALES
Una onda longitudinal es una onda mecánica en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.
En teoría de campos también pueden existir ondas no mecánicas de tipo longitudinal, aunque las ondas electromagnéticas son siempre ondas transversales nunca longitudinales debido a que el fotón es una partícula sin masa.
Una onda transversal es una onda en la que cierta magnitud vectorial presenta oscilaciones en alguna dirección perpendicular a la dirección de propagación. Para el caso de una onda mecánica de desplazamiento, el concepto es ligeramente sencillo, la onda es transversal cuando las vibraciones de las partículas afectadas por la onda son perpendiculares a la dirección de propagación de la onda. Las ondas electromagnéticas son casos especiales de ondas transversales donde no existe vibración de partículas, pero los campos eléctricos y magnéticos son siempre perpendiculares a la dirección de propagación, y por tanto se trata de ondas transversales.
Si una onda transversal se mueve en el plano x-positivo, sus oscilaciones van en dirección arriba y abajo que están en el plano y-z.
Diatérmicos
-En cuanto diatérmicos se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con 
nuestro ambiente.

 
-Se dice que un límite es diatérmico cuando permite que el estado del sistema se modifique sin que haya movimiento del límite. La manera usual de definirlo es que un límite es diatérmico cuando permite el flujo de calor a través de él.
-En cuanto diatérmicos se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con nuestro ambiente.
Proceso Adiabático
En proceso adiabatico, el sistema es un sitema aislado, el sistema no   recibe ni entrega calor al entorno (q = 0).
Un ejemplo de sitemas adiabaticos son los termos, se guarda por ejemplo agua caliente y está se mantiene de esta manera pues no deja salir el calor al entorno.
Por lo tanto,  al aplicar  la Primera Ley de la Termodinámica, la variación de la energía interna dependerá únicamente del trabajo realizado o recibido por el sistema.
                                                           
                                                      

Analicemos lo siguiente, para un proceso Adiabático:
  • Si el volumen de los gases se contrae, entonces la variación del volumen es negativa, por lo tanto el w tendrá signo positivo.  El entorno ejerce trabajo sobre el sistema.  
        Podemos asegurar que:
                                                
 
  • Si el volumen de los gases se expande, entonces la variación del volumen es positiva, por lo tanto el w tendrá signo negativo. El entorno recibe trabajo del sistema.
        Podemos asegurar que :
                                                 
Ejercicio 1.7           
PROCESO ISOTÉRMICO
Se denomina proceso isotérmico o proceso isotermo al cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W.
Una curva isoterma es una línea que sobre un diagrama representa los valores sucesivos de las diversas variables de un sistema en un proceso isotermo. Las isotermas de un gas ideal en un diagrama P-V, llamado diagrama de Clapeyron, son hipérbolas equiláteras, cuya ecuación es P•V = constante.
Proceso Isobárico
¿Qué es un proceso isobárico? Es aquel sistema termodinámico en el que se presenta una variación en volumen o temperatura y su presión permanece constante.
Recordemos que en un proceso isobárico, la presión permanece constante.
La mayoría de los cambios físicos y químicos ocurren a presión constante.
Por ejemplo, una reacción química, que se realiza en un sistema abierto, la presión es la presión atmosférica y ésta no varía durante el proceso.
Como hemos visto a presión constante:
 
El calor involucrado en el proceso a P = cte. se denota como qP
.

Aplicando la primera ley:


 
reordenando la expresión, podemos llegar a:

          qP = (E2 + PV2) – (E1 + PV1)

Los químicos denominan Entalpía (H) al calor de un sistema  a presión constante,
            
Siendo la Entalpía:
  •      Propiedad extensiva y
  •      Función de estado.

Entonces, en un proceso isobárico la expresión de la Primera Ley de la Termodinámica 
  se puede expresar también como:

                                                                    

El proceso isobárico, en un diagrama PV:
Se puede calcular el trabajo de manera gráfica, ya que él es área bajo la curva. Tengan en cuenta que, si se calcula de manera gráfica, las unidades del trabajo, estarían en atm-L. Normalmente se debe hacer un cambio de unidades a Joule o calorías.

miércoles, 4 de marzo de 2015


•   GASES
Se conoce como gas al fluido de densidad pequeña. Se trata de una condición de agregación de ciertas materias que las lleva a expandirse de manera indefinida, debido a que no poseen formatos ni volumen propios. Los gases, por lo tanto, adoptan el volumen y la apariencia del bowl, frasco o contenedor que los conserva.



Las propiedades de la materia en estado gaseoso son:
 Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.

3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.

4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.

PROCESO ISOCÓRICO
Un proceso isocórico, también llamado proceso isométrico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el proceso no realiza trabajo presión-volumen, ya que éste se define como:
ΔW = PΔV,
donde P es la presión (el trabajo es positivo, ya que es ejercido por el sistema).
Aplicando la 
primera ley de la termodinámica, podemos deducir que Q, el cambio de la energía interna del sistema es:
Q = ΔU
para un proceso isocórico: es decir, todo el calor que transfiramos al sistema quedará a su energía interna, U. Si la cantidad de gas permanece constante, entonces el incremento de energía será proporcional al incremento de temperatura,

Q = nCVΔT

donde CV es el calor específico molar a volumen constante.

En un diagrama P-V, un proceso isocórico aparece como una línea vertical. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre si.

De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.